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INTERODUUCTION

One of the hottest problems of modern physics is coming to
terms with the four fundamental forces of nature: The strong

force, acting between nuclei in atoms and still not understood

properly, the weak interaction, responsible for the decay of

the neutron ., the electromagnetic forces, and, finally. the

feeblest of them all, gravity. The weak and electromagnetic

are now believed to be united in the Weinberg-Salaam theory,

and has been confirmed by Rubbia and his team at CERN. Current

work on incorporating the strong force in this theory seems

promising. and would be testable in that it predicts the decay

of the proton. The fourth interaction. about 4x10 the strength

of the strong force, has sofar elused all attempts of uni-

Fication. The main reason is that gravity in its basic struc-

ture is fundamentally different from the quantum mechanical

models that are believed to describe the other forces. No one

has yet successfully quantisized the grawvitational field., and

it seeme to be a very difficult task.

The concept of unification, though, is not a new one. As

early as 1914, Gunnar Nordstriim at Helsinki university

outlined a fivedimensional theory attempting to unify th

forces. It had to be abandoned though, since it failed to

account for the bending of light, as predicted by Einsteins

CGravitational

theory.

What here follows is an attempt to reproduce and explain
the theory of Theodore Kaluza and Oskar Klein. which . quite
successfully. ties these rather different interactions to-
gether. A brief account of the two different theories is giwven
in order to substantiate the Kaluza-Klein theory.

PREFACE TO GRAVITY

; Ever since the day when Euclid develcpped his a‘:_git‘gmm:ic
theory of geometry, mathematicians have wondered at!difference
in the complexity of the postulates he made to support the
m ¥. There are five postulates, all which are formulated
133, with one exception. This exception, known as the
late ", . ' states that (1) " Whenever a line




intersects two other lines, forming with the latter samesided
interior angles, the sum of which is less than two right
angles ( 90° ), these linmes intersect on that. side from which
this sum is less than two right angles. "

This sounds a bit overworked, and this was realised by
greek mathematicians contempgrancous . with Euelid.over the
centuries there were various attempts to prove this postulate
by reformulating the other four in a way from which the fifth

postulate could be derived. Saccheri ( 1733 ) and Lambert
( 1766 ) pursued attempts in this direction, all of which
failed. It was however realised that an equvalent version of
this postulate was " Through a point not on a line there
passes not more than one line that is parallell to the given
line. ". The first real breakthrough in this matter originated
from the great russian mathematician Lebachevsky ( L1793 -
1856 ), nowadays considered as the founder of non-Euclidian
geometries. His version of this - notorious - postulate was
" Through a point not on a line in the plane, there pass twWo
lines which do not intersect the given line."” . To his and his
contemporaries surprise he feund no contradiction with the othel
postulates, and so he had formulated a different geocmetry.

Later in the 17:th century, Gauss and Bolyai arrived at
similar but less elaborate results. Gauss, still later.
derived a formula which describes the eurvature of a surface
in terms of a reciprcal of a product of twe numbers, simply
called the curvature radii. He alsc managed to prove that a T
both sufficient and a necessary condition for a surface to be
flat - or Euclidian - was the nullificatien of this number
malled the scalar curvature. The work on these peculiar
ries culminated in a thesis by G. Riemann ( 1854 ) who
g neral theory of curved surfaces valid in any number
hese general surfaces are called manifolds or
ces - ‘whose applicatian in physics was to

T




PRE

TCO BELECTROMAGNET ISM

In the 1840:

1 attack at the problem
of explaining the mystero

magnetic forces that

had been observed foralong t

sfar had defied a

natural explanation.

serted s&¢ could be seen as

Fieldlines ", a kind of bended grid that ext o all over

gpace and that in itself poss

energy and which acted on

charged partic

ide

as a force; that is, a forcefield. These

mathematic

s were set form by Maxw

11, who, as a

curicus fact derived them

using purely

hanical arguments,

and as a nasty sideef t. introduced B

notorious ethar

The equations, as seen in mc mode

tises on electricity

were ca

ectorform by Heaviside. thereby reveal

wavenature of these field:

By the beginning of 1910, both

of the cornerstones of modern physics were laid in quantum

theory and the theory of s It was found.

self

that since time really was

operty

in four ccordinates. space

cal entities had to be gi

time; hence the word " spacetime was invented. A remark-

able property of the L

antztran:

cions of special rela-

civity is that Maxwells equations are invariant under these.

Newtons theory. however had to be revised in order teo z into

the new a force in Newtonian

heory. This is basically becaus
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relativicy, the Lorentzhoost - boost being a physicist's

sloppy name for a transformation - could be seen as a rotation
in a fourdimensical space with coordinat
[-ct,\r.,y_}')

Also the invariance of the speed of light implies the invari=
ance of the guantity

ds'= k- dv-d bl

called the interval ( - 0 along the path of a light ray ) and
where dT - ds/c is called the proper time. By this time an-
other striking quality was found: In applying the principle
of least action whfollomnu " Lagrangian " put in a vector-



form
S'_J‘tmcésﬁﬁuxd__f[mchuéw‘-amétj i
one derives easily the equations of motion in the following
motation: i
M _J,l’!_'- 3 Fhet® 2
45 G

The quantity F, = ‘A:’Sm'_ aa\z is called the elctromagnetic
fieldtensor and the A; i=s denoted the vectorpotential. It ean

be shown that Maxwells equations are reduced to the following

relations: SE
V*E = - = =
o= 3¢ = (3a)
-R = (@]
Al (3b)
3F.’4+ 3 Fur o )P{-: = (@) (3¢
A" et A
x = o By E
B Ll = (4a)
Gl = b)
E_F:-_ he A cded
ke
TThe vectorpotential itself is not a measurable guantity: only

derivatives of this ctherwise artificial object are relevant.
The Lector is related to the fields as follows:
BT A
E--Vp - 18 (5
and the fieldtensor as

o - B¢ SEgic - Byl
F‘ o E-f‘(.; (0] P.v, - B (63

i | B -3 O B,
E
BB By (08

TOWARDS UNIFLCATION
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‘after his special relativistic theory, he
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to all systems of reference. The mathematical tools necessary
bring the theory to life had been arocund aver since the days

of Riemann and the Levi-Civita &

nsor ca

culus provided a
powerful tool in treating the the

a convenient way. With the help of mathematicians lika
Grassmann he was able to formulate gravity using the simple
defining properties of tensors:

RiaAGATRRI= Al :_‘:‘ )
This is called the principle of covarianace., and expresses

precisely the liberty of applying the equations in a general

reference system - or frame - . He generalised Minkowskis
spacetime in introducing a generalised line element as

b} Ty e : -
ds= 9;,dx dx k,i= 0...3 (B3
Where the §;xis called the metric tensor. This tensor has
the the rdle of gravitational potentials: instead of having
cne fieldequation for the newtonian potential - Foissons

equation - or

SO LT S 93
one has now a number of independent relations ( 14 of them in
the most general case ) intimately related to Riemanns theory
of manifolds according te which the properties of the latter
is described by a rank 4 tensor:

Ru-«’ Jl‘-""'a&*r' {'1..-1—.1.:..“: TR | (r (e o

)

TThe symbol n& is culled Christoffel symbols or connection
coefficients, and they arise in the Riemannian theory in
taking the derivative of a vector or a tensor on the mani-
fold. Since the value of a vector generally depends on its
location on the manifold - not the case in euclidian space =
one must. in taking the difference between two vectors infin-
itesimally separated., subject the vector at one point to an
operation called parallell transport. The | wt can be seen as
linear operator whose bask is to perform this operation. In

~ tensor




is called a covariant derivative, and similar formulas can
be derived for covariant and contravariant tensors. The con-
nection coefficients are not tensors, since they vanish in

a locally flat frame ( it can be shown that there is always a
locally flat frame in which dg;w /dx® = 0 ), and according to
(7) they should vanish in all frames which contradicts (11).

The usefulness of the connection coefficients lies in their
relation to the metric tensor. In tensor calculus it shown
that one can " raise & lower " tensors using the gy as
r\‘ - c;“' Aw— . Al = gim A™ . As a result of this one shows
easily that

D

____5____ = o

axt

From a general formula for covariant differentiation it turns

out Ithal: O 3“-._\

e & ( 2% Taxm  axe/ 2)
Einstein argued that a most natural description of gravity
must be linear combination of second rank tensors Ri. de-
scribing the properties of spacetime. The source of the curv-
ature of spacetime is given by another second rank tensor cal-
led the energy-momentum tensor. having the same function as
the r.h.s. of eq. (9). This tensor can be defined according to
the principle of least action., or

{j‘-ij ( i %’;—:‘)J-n ~o
* (13)

lwlvi\w the Euler-Lagrange equations to this yields

Si(EL) - g L)
‘_k 2 29’ - (3i 9%_[{_‘] (14)

is analogous to the stress tensor in elasticity-
i tha fuu.rmmenm = cnnuaing lnfnrlml.‘.i.on on both
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The tensor has the following meaning:
Ex St
(16}

E = energy density, S. = amount of enerqgy transferred through
a unit surface per unit time and Q., = amount of momentum
transferred through a unit surface perunit time

In purely intuitive manner, Einstein reasoned that the eq's
governing gravity ought to look like

Qiu‘:llj'mR’ e Tiw

where the Riw = RYaw and this cont

(172
acted tensor is called the
Ricci tensor. Weakfield considerations give the value of the
econstant k and it turns to be
P e

(b ]
For electromagnetic fields the energymomentum tensor is
= Lgix B Foes [Fi Fan
Which is produced by applying (14) to
EEE DL

Around the 1920:ies people began too see connections between
Einsteins general theory of relativity and Maxwells theory

(18)

and different approaches were tried by H. weyl. H. Thirring
and, as mentioned before, G. Nordstrim.

it was, however an unknown privatdocent in Russia, Theodore
Haluza who managed to bring some light on‘%roblamk

THE KALUZA-KLEIN THEORY

In 1919, as disclosed in series of letters to Einstein. he
came up with the idea of adding an extra dimension to the
Neﬂrlﬂo This fifth ceordinate is however surpressed in de-
ing that the 5-d metric be independent of the extra dim-
M\:&l@mm in putting Yee = const, one gets the fiol -




“The reason for this ansatz is the following:
In Zalculating the conne
symbols are:

on with this metric, one of the

=3¢ Bgai /82" - A9 /A ) - K( ol .k - Tew. ) 1)

i
where dgek /8% = gew, i and similarly. as a time and space
saving measure, DRekc /3%’ - Rok ;1.

Now, (21) looks remarkably like the definition of the el-
ectromagnetic field tensor!

What Kaluza then did was to show that this assuumption brings
out the correct equaticons of motion in the weakfield limit.
with some necessary assumptions of réle of the Fifth coi
ordinate. The work was published in 1921 by Einstein, having

decided after twoyear correspondance with Kaluza , that the

treatise was consistent.

-—hl‘

q In 1926, Oskar Klein of Sweden published a simliar work in
- which he tries to take quantum mechanical effects into account
Z 1 He also derived the results of Kaluza in a different manner,

in starting directly from the actionprinciple due to Ehe
famous mathematiecian David Hilbert. The latter presented a
rigorous derivatien of Kinstein's fieldequations as

Js- 4[5 (R+1L)de =0 _ .

R is the scalar curavture, R = g Riwand L is the action of
the source of the field. In applying formula (14) to this. it
can be shown r.hat.tf Rix = 0 [ see e.g. Landau/Lifshitz p.

275 ) and leads to eq. (17).

What is remarkable about this theory is that both the 4-d
gravitational scalar curvature + the electromagnetic scalar
drops out of the calculation with L-0.

LLEAEEE

"!hia can be shown as follows:

hssunlnq that the 5-d metric is independent of x  leads to
following possible coordinate transformation:

& =l-Y

(232



It's also easy to show that the following quantity is in-

variant under (23)

e (\nu-‘l‘iﬁl ds det
el (24)

{ Sea appendix III ).

ona can now puL the metric in the fol qwins cgnugn]ent form
o

i 0BAx o
| S S e 2R
Yix= abA; l 3..“-':#\1‘1. _ LA ¥ jh‘
1
(25)
b = constant, a -‘f., o
The connection coefficients are now. according to (‘.2):*
B s S AL T ey 7
[pNsEEg =0 rl.- E;-TA = r—‘-P’LFc‘
(26)

- ﬂ- 3 - -
r'.‘.‘r-:.ra- f‘_}h {QD F\"’ATFD)

[y bAL - AT (s FrreAefre) « b (R sAve)

The reason for the departure from the the simple connection of

Kaluza is that these symbols are given in a " contravariant
ol ;
form. and since ['.1« = Jedl Le . these are by necesssity more

complicated. Seing these symbols, one is ready bo Lear ones
hair in despair. Being of stubborn nature. however, one sets
one sets to the tedious task of feeding these into the Riemann
tensor. Working in an orthonormal frame, this gives:

P g at
Rums Rim® 408 Pubirs & (aurtsosanF 1) 72 AAE g

(27}



Now, it's interesting to note that in forming the Einstein
tensor

& Tem Riw- -al_ﬂlkﬁ

one does not obtain the energy-momentum tensor as in (18). We
nevertheless continue and form the curvature scalar as

ﬁ = 3“"?!.”\., 43}"“ on‘t T Rou

and this does indeed turn out to be (28)
~ 3

R-.Lak F*™ Few

which is consistent with (18).

As a curious note, one might add that in putting the A =0,

then in fnrming: Einstein tensor, this is consistent with

ST

L (18). and furthermors, in forming G  this is simply
— 4 Eedy

— 255": we=o =» T

——— which i= eq. (4c) on a curved manifold.

]

]

The reascning above is, of course, highly dubious. First one
assumes a 5-d metric that has off diagonal components, inter-
preted as vector potentials. One then hopes that these will
appear in the Einstein tensor only acted upon by a differen-
tial operator { the covariant or the ordintry derivative ),
It is found., to ones dismay, that this is not the case. This is
peculiar in at least to ways: First of all, the wectorpotential
it self is not a measurable quantity. Secondly. the Gix should
be gauge invariant, and so all auxiliary fields should be ab-
sent.

On the other hand. the curvature scalar drops out nicely from
the calculations, indicating that

r the contracted Ricci tensor is gauge invariant. or
‘sllp semewhers in the calcuations.

n the error probably lies somewhert
is better exp ai.nsd i howinn



{ The words "covariant" and "contravariant” are actually
without meaning since the

do not form a tensor. There
should be no ambiguity though., since it's a matter of conven-
tion. )

Since the Riemann tensor generally in the literature is given
in terms of "contravariant” symbols,these have to be turned
into the c.orrcr_‘L form. This is Hone by

e L Tty S BT
If this is valid, then there really shouldn't be any difficult-
ies in the rest of the calculations. If this is not true. it
may be possible that greater eautien has teo be taken in going
from ]—Llw- to ["_:‘... * AProper Lre

to calculate the cuvature tensor in a pure covariant form.

eat wo
This calculation has, nevertheless, produced the correct
scalar actions, from which it is a simple matter to derive the

field equation from the variational principle.

THE "CORNER" COMPONENT

Another feature of interest the rdle of the "eorner" com-
ponent, which can be dealt with conveniently by putting the

Az = 0 and Ye, = f(x), i.e. 1
Gl | o__ iu ((f_t.‘_).‘_‘__.-o —
Wies (AT TR S SR O (34)
The connection ( a lot more simple this time ) is:
I 1
P I S T O T
A

o B L

op = %, Yo [3F =TWY (35)
and the Riccitensors are
Ruws ...J.'F @t L Lt R

FY

He

Ree = 34 ety e (36
and

ﬂ-a = 2.“u * 3.#3 U 703 (372

‘Partial integration of second term and using the formula for

~the four divergence
' : e (38)

be ,as i‘see it




—]

L

il

reveals that the terms actually cancel and so

g:/ﬁ_‘.r_[;e'-ﬂ.

(39)
The facr.or\EF is a bit of a bore, but can be gotten rid of re-
scaling the metric as
(At e "'u'
- ( o [qrgn) o | gty
and the connection :

F.:'F;v‘r‘v"nto n,u"(..;f_”_(é"h
o e 1 5 sE (85 ¢redT e 304t

(40}

S witching the mind inte tensor mode again reveals that
EKM-—_LEIkEE‘.-LbjkmE“tF,‘ 4'."_5 LY}
El 3
¢ e r “2)
Roe - L@ L@ s -
3 3 e (43)
The last term in (42) can be integrated by using (38) and

5= —fr‘su.\._l;_‘ in = 4 [ 9 (F3@ s

Working in a Minkowski frame in which g,_.; =0 yields

=] -
S'fs-f'lr:‘fﬂu»({ lrgf;té_n_ = ﬁl«hz-i_b‘h;ln- a4)

Finally the action is@= a-al_ﬁ'"lﬁu%q’?q .Integrating the second Cerm

R- £~ e )

' The energy-momentum tensor, as formed by the Ricei tensor above,

ﬁ then
( 19 Qe - @) 5

der.l.\rad by varying -. l'f( '8 g «) with respect




~action then being of the type *

S [B(R-AF" Rt 8 @l ) in
va

47
In "rescaling” the Kaluza-Klein metric in putting a = 1, re-
3

sults in A --—t_-. B --"_. By virtue of the variational principle
again the following fieldequations emerge:

3 1 — 1l Ia 1
G i —_:_{P WFen o9 B R - a?(k,utp.u—-alam..v“w.-}= o (48)
In the case of an empty spacetime where F, - 0
G —— (l‘&, kw1 G, @'.V,s.)

(A 2 (49)

In the general principle of variations, one can assume a metrie

in as many dimensions as one likes: in varying the action in the

usual way one obtains
Is=8fv puiida = [(Pu-Yup)wds™ e =

This follows from the fact that J!’G}?‘-jﬁﬁlud’.‘ih and it is shown
in any standard book in General relativity that {F!u.La =0. For
the empty space-time solution cne has

P:ri_FP-_ o (50)

In feeding the metric of (34) into this, and rescaling according
the previous calculation it is a trivial matter to see that one
gets an equation identical to that of (49)

It is in fact rather easy to take the " corner " theory a bit

further by assuming a general vacuum metric with a corner matrix
as follows

i AT
Y- Jiv | © L g4 ¢ . ;_::;—«:
B 000 D s g p° (51)

j. n is almost uﬁl:ieal to that of (35), and the inter-

(M




in a completely analogous computation one gets:

X S 1
Rhiws Rien.  RWonz fli.o

- ] -
Pk __g_ Blsecl [.s)f‘i.)u...."%e Bl Dlkgle

i i
Rasb= ".al (3. D;'.,»),;-s',r“l &rn—oahm 4 rl'gl,.. 'D”Ji)rl., il
Rie Riesd 0(Due)ime 4 D0,
Reano
Rev= —T; (Slwb"*"“)""51—1’*3“”Dﬂb.w*4‘- 3'“'1), b Dad, 4 [)':J
In formimg the action as
= 3 Ruws DR
One gets
Re fi= D Debs{ Db D Duiie
Now, since D°k 3 D°P/D, where D - det(Da.k ) and

¢ D% /Dl.2 = D%/ - D”[-‘--/U‘ = D -_al,.f'_-J « Dl I}..._‘"/I)
one shows easily that the action S is

Cl
whichzidentical to (39)!

one would therfore expect ( this is pure guesswork ) that this
could be rescaled to cobtain an action of the type

RY s F(D D)

and that this solution would satisfy (50).

S B R S .

CONCLUSIONS AND FINAL REMARKS

this derivation of the Kaluza-Klein theory something obwiously
. The most important defect is that the Einstein

he intermediate step leading to the action,

ntials themselves, which is a non-physical

lip in the calculations somewhere,
I Cristoffel symbols. It
lectr: i




of this kind in "real life", they are bound to become infinitely
more complicated. For example. in rescaling the full 5-d metric

- letting everything depend on space-time - the computation would
make the original Kaluza-Klein tensor excersise look like Some-—
thing from a 6:th form math. book. There is, however, a smarter
and less time/space consuming way of doing all this. In 1928? a
French mathematician, Emile Cartan, published a treatise on
Riemannian geometry that reduced the all complicated mass of let-
ters and indeces to handling a simple algebra called exterior
algebra. the cperations involved are distantly related to the
cross product in ordinary geometry.

and makes the possibility of
making a computational error almost nonexistent.

All the modern Kaluza theories have taken quantum mecanical ef-
fects in to account in order to explain the other two forces of
nature. This problem, relativity being a classical theory, was
realised by Kaluza himself. In his final remark in his paper he
concludes " In any case, every ansatz which claims universal wval-
jdity, is threatened by the sphinx of modern physics. quantum
theory."

AKNOWLEDGCEMENTS

1 would like to thank Dr. Bailin for introducing me to subject

¢ and who convinced me to do it the hard way ), and for being
patient with my computaticnal mishappenings. I'm also indepted to
Dr. Foster for interesting discussions and a very good reference.




/(;(f‘/QJ‘;'N arlfly  #Fle (:{q{bz_q - &/t—ﬂ-‘: i .‘g’“".




BilesdVea — G Jery Boper Sl
om e

c | BbAe _-_-.‘A"ﬂ-e'-i-a“ ST
_—-1————— i ( b
3 iE i
el | Hirab Al e 2 et (0i)= ovg) :

el fMcirec, e 2

e s alie ™ [ 6 i ety b petion )

L=

i 1

i L+
o "Y(Y—‘, Y o ) « ebFT = [Fae
r\.m = I 0 aar i
—_ ¥
: s o
;g S [;r (Ym,n —}m,nJ’ "‘Ii'_:“ F:.,,u = Moo

r-':ﬁ = QT( T,-‘,J'Yn.-‘Y- l'-‘,r_{‘]-‘ Eu [ }’p»,n 5 ‘roclw)

¥ 3
o~ l:ﬂ'rrlﬁ —sb B (a“at":'\‘*-ﬂ*’e‘ﬂhu*/noﬁa.w &30 --

ol=

I

A =
A IEINGIC T *ﬂ’ﬂ=am.n~z’e’z@.fau,~>

a
= L = 1 — h L
-S{/Jﬂ-.a /gow; s—bf@,.l ap - T8 A (/.]. Frn*/-\nF}-r 4%—(‘4“#14”‘”
E

C- GRS ¥ren)

_—
S - o
- f“lﬂ“‘ & f__:_’(/t‘\‘n F:‘/'\!‘ F; [ Crapogies CarCuch frem &f hn)
. ) } 1 Do I —e f
'_““_ = {ﬁu-—,/‘r:;.‘..‘ (e J‘H:.-.'- Qu’\]—ﬂ“ b r_ru-rr;--hr:;wrﬂui
Clugr & fotose p sty frie =3 | . =0

=
=
=1
— |
=
-
=
=
=
-
=1
=
—
—
—
=
—
=
==
e
—
—
=
—
—
=
=

&E‘i L(ﬂhr'-i-.-),-( S (/Ju F'h},( — F;(J,.'v- (A= F“‘L'—J W




w ""‘?" le derive Fog
4 e
Flu Fuse + A CEL,, -l ,...)"‘Au ---,4.. i)

Ll '45“» FJ

o F (-fal-,l-‘a@;., )___‘ r (ﬁl‘-.(“/ﬂ'h.l] rvp.w.. 26 o)
S e g

+ A Flio- A FF,,,;M,]

0 4 YEfR OF ety Lk Tl n:./ Aerire Yiop I,
w ()] (O] @
3. i vy =] - =T I = i
(505 ( R0 e 0 A F i Fi A P, Bl
4 ©

“

 ApA ELF r«'"'ﬁ/‘!‘_ 'r_ﬁ‘f“f*-/‘c!' = /’»/’f (=]
@ z ©
"/f‘f/{'.,F’ F;....~/lﬁ/7wff<; rde L, #—' "L,,../l‘./_' r P)

= “‘7 L

':)JI -'---T, S Ofder o £ ;‘u.n,-_r_

= ! = F ! S UEE 1 ] 4

= 53, A Gyl (F1 ve — Elo By Ea El e o

e ) e
[a ( F ;,.r,.“_) A El e _7”_* Al r)

1l
-

“R;I(-ﬁi' r-'hn{" rl«fh'uo—l'"_;,r“* i'":l"“

ch F'._.J:

B '“[(/"F"‘f’"rJ'“ - (AF%=a, P‘.._)F" F/
's_pl

e - -:L A“ Fune £75 ol Lot b mu(r"-uj

-f'",.":, ..._-f'“ r-° Bosies “5 (./3“!'-‘,4‘),.,_-_

».-r.ﬂ-..



it b A I'n =
= 2 iyt }
7
'llr._-l
T 5 - ]
= e T L A ' [ Pl e o =i
|
| ks
| Y k
| : F e
n e e s = 7 3 >
K= 3 " Fe.. & HEoe > T P e = Eo e~ 5% AFa.e ~
5_ o ’

&)

@




e e,

APPEVD I X (D

(GlCY) GLions with +he

" =) ;
OV lpr Lt o ffern

1,4




AN

i

e
—
==
—
—
—
—
—
e
—
—
—

' =
B o

ﬂul..-uﬁ B 1":;,.,,- F‘,‘,f“:'n o Ir_‘:nr, o

(e ‘-::’ ( t_.-v".],'w- -I_‘ LA

Yo
IR e 1 (eruce, o
dee “rep?
e LR o
[zof_n ;L('Fr" e
B R Bros i Gesisn NGt

P;,-..,-.c

Al 1k
- A Oy SN [ ¢ <
R o

e SR R S B L L TR I T

S: ‘(‘GU’;(;_ if_‘:":t ) 3 ¢ PArrer Aednpes i of
&

b e d yeog —ELA

Bl Coeln --[ (BN dn = - [15 e e Cliee
5 (f:)? ot



[alcelation Fhl
DGl e 4
el G a0

i
G [/ rT Aree £ e S
i b o
L5 tutder (D))

lmu“l“l“uul"““!u“ AURRA RS RERAREEE




mmm“mmmllﬂmﬂ{llii'ﬁ‘dmmummuummm

¥ ?.’J'fr. ﬂ;,f e 4’/»-1-, ﬁl"-ri(v; ;('3-‘-1,_ ?th)

3 L4 (il
e / (‘;—)Pt]“

(‘,e‘x tindeeng F"‘*- l"—‘f) [(‘

- L e b 1B
(—\cc‘“rﬁpv" R lr‘w-,‘ CPt) op

pE— &

— e
5 e e ol [ oL —_ g :
[...1\:“{__ F”“T et J:J (Urv @,y =y tev =6 1,-{; ) Fape sbosion  fin £ bnoi Sy
—_— ]
ity 5 - = e i

B (0 (2 -d el u*) m‘ﬁu(—-— ),*
g 5“_( %';J‘f) N P (0) () @

2 d‘ (‘440‘_{""(‘0’_“'“!“@“‘“"5“_‘
et

&

A \ @ ]
-rd‘(ﬂ--fﬁm'-drw{—"ofcf',h* o ,L,__uf‘g.'(_,r ("M“:’“"U»—szbﬁ{‘ “’ £

i e L e @ :
000" - G -5 - G S - Fen G0 <5, e

= :
ST @u-5,, e,

f(d-:f (%EJ'.(_ (‘r :fl-’ %I— J““‘“ St (V’: ,—'juu—(%::‘rj

»

F ) 2 ! i 3
-‘-—— g [d“cc-.n;.@.n— (rl__(.(!.ucﬁr,-jlw_u, (G Boiers (G . =

I T -
=il G e R %ﬂ_

et

E‘f:: -r:"- r r: rulr,ou = =B ey ([’*r) fe:.!(,..

P 5 g

'L




»
alp

i b . 5
7= 5 (Nl L GRRR

5 ;’U’; (emeee) e 4 p;_;}

g Ce,e e i
S0 o SIS TG S e
gt £

L

ravlem [ofiny Fn Fly fergy ef i R denon

.
} 2= Peale
£ s r o

¥
pi P ‘J_.Llrﬁ. - ATTHES e ¥ ot | - 0.

Sl e o\ A B e TR oS QU0 o R Jo AT i
b iy i

‘e B, ] 5

Peallfe—2)= @oce {(P=-5) = =2 @ ur L Geps
. J 7

F"-"-'\f"‘",r fle Lo vadee Jeare. s e

RN, Gl <

Frivr ortalcn O P
PO S
WVTr er Mocecsoce of L= (i - 5 7
i, Hoersh s @D e el )
: . ¢ £ <) Falizza
Mepmtin: 26 2 Ay o

o= AL NTASA Y V= ASAE Yoivon
b
A A I

g &
Fami e h S
ete - ARARN AT (“ru—‘i:jr&-) IR

Y- \:—-—";Y"L l.l'\(;(‘ﬁ\('

& &)




